Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.477
1.
J Neurodev Disord ; 16(1): 14, 2024 Apr 11.
Article En | MEDLINE | ID: mdl-38605323

BACKGROUND: Deficits in executive function (EF) are consistently reported in autism spectrum disorders (ASD). Tailored cognitive training tools, such as neurofeedback, focused on executive function enhancement might have a significant impact on the daily life functioning of individuals with ASD. We report the first real-time fMRI neurofeedback (rt-fMRI NF) study targeting the left dorsolateral prefrontal cortex (DLPFC) in ASD. METHODS: Thirteen individuals with autism without intellectual disability and seventeen neurotypical individuals completed a rt-fMRI working memory NF paradigm, consisting of subvocal backward recitation of self-generated numeric sequences. We performed a region-of-interest analysis of the DLPFC, whole-brain comparisons between groups and, DLPFC-based functional connectivity. RESULTS: The ASD and control groups were able to modulate DLPFC activity in 84% and 98% of the runs. Activity in the target region was persistently lower in the ASD group, particularly in runs without neurofeedback. Moreover, the ASD group showed lower activity in premotor/motor areas during pre-neurofeedback run than controls, but not in transfer runs, where it was seemingly balanced by higher connectivity between the DLPFC and the motor cortex. Group comparison in the transfer run also showed significant differences in DLPFC-based connectivity between groups, including higher connectivity with areas integrated into the multidemand network (MDN) and the visual cortex. CONCLUSIONS: Neurofeedback seems to induce a higher between-group similarity of the whole-brain activity levels (including the target ROI) which might be promoted by changes in connectivity between the DLPFC and both high and low-level areas, including motor, visual and MDN regions.


Autism Spectrum Disorder , Neurofeedback , Humans , Executive Function , Autism Spectrum Disorder/therapy , Brain/diagnostic imaging , Brain Mapping
2.
J Neurosci Methods ; 406: 110132, 2024 Jun.
Article En | MEDLINE | ID: mdl-38604523

BACKGROUND: Traditional therapist-based rehabilitation training for patients with movement impairment is laborious and expensive. In order to reduce the cost and improve the treatment effect of rehabilitation, many methods based on human-computer interaction (HCI) technology have been proposed, such as robot-assisted therapy and functional electrical stimulation (FES). However, due to the lack of active participation of brain, these methods have limited effects on the promotion of damaged nerve remodeling. NEW METHOD: Based on the neurofeedback training provided by the combination of brain-computer interface (BCI) and exoskeleton, this paper proposes a multimodal brain-controlled active rehabilitation system to help improve limb function. The joint control mode of steady-state visual evoked potential (SSVEP) and motor imagery (MI) is adopted to achieve self-paced control and thus maximize the degree of brain involvement, and a requirement selection function based on SSVEP design is added to facilitate communication with aphasia patients. COMPARISON WITH EXISTING METHODS: In addition, the Transformer is introduced as the MI decoder in the asynchronous online BCI to improve the global perception of electroencephalogram (EEG) signals and maintain the sensitivity and efficiency of the system. RESULTS: In two multi-task online experiments for left hand, right hand, foot and idle states, subject achieves 91.25% and 92.50% best accuracy, respectively. CONCLUSION: Compared with previous studies, this paper aims to establish a high-performance and low-latency brain-controlled rehabilitation system, and provide an independent and autonomous control mode of the brain, so as to improve the effect of neural remodeling. The performance of the proposed method is evaluated through offline and online experiments.


Brain-Computer Interfaces , Electroencephalography , Exoskeleton Device , Neurofeedback , Humans , Electroencephalography/methods , Male , Neurofeedback/methods , Neurofeedback/instrumentation , Evoked Potentials, Visual/physiology , Adult , Brain/physiology , Brain/physiopathology , Female , Young Adult , Imagination/physiology , Imagery, Psychotherapy/methods
3.
Harefuah ; 163(4): 208-210, 2024 Apr.
Article He | MEDLINE | ID: mdl-38616628

INTRODUCTION: Neurofeedback (NF) therapy is brain training using operant conditioning including real-time displays of brain activity to teach people how to regulate their brain function. We would like to present a treatment for a patient who experienced severe traumatic events on 7/10 including physical injury accompanied by difficulty sleeping for two months, nightmares, intrusive thoughts, difficulties in emotional regulation and difficulty in concentrating. Due to the complexity and difficulties in emotional regulation accompanied by severe sleep disturbances, it was decided to treat with medication in combination with neurofeedback. After several training sessions in addition to pharmaceutical treatment, significant relaxation was observed, there was an improvement in concentration and the patient was able to return to his work and normal social functioning. In addition, intrusive thoughts decreased in intensity and frequency.


Neurofeedback , Sleep Wake Disorders , Stress Disorders, Post-Traumatic , Humans , Stress Disorders, Post-Traumatic/therapy , Physical Examination , Pharmaceutical Preparations
4.
Zhongguo Yi Liao Qi Xie Za Zhi ; 48(2): 132-137, 2024 Mar 30.
Article Zh | MEDLINE | ID: mdl-38605610

The study developed a memory task training system using functional near-infrared spectroscopy (fNIRS) and neurofeedback mechanisms, and acquired and analyzed subjects' EEG signals. The results showed that subjects participating in the neurofeedback task had higher correlated brain network node degrees and average cluster coefficients in the right hemisphere brain region of the prefrontal lobe, with relatively lower dispersion of mediator centrality. In addition, the subjects' left hemisphere brain region of the prefrontal lobe section had increased centrality in the neurofeedback task. Classification of brain data by the channel network model and the support vector machine model showed that the classification accuracy of both models was higher in the task state and resting state than in the feedback task and the control task, and the classification accuracy of the channel network model was higher. The results suggested that subjects in the neurofeedback task had distinct brain data features and that these features could be effectively recognized.


Neurofeedback , Humans , Neurofeedback/methods , Cognitive Training , Spectroscopy, Near-Infrared/methods , Brain , Prefrontal Cortex
5.
Neurosci Biobehav Rev ; 161: 105680, 2024 Jun.
Article En | MEDLINE | ID: mdl-38641091

Empathic communication between a patient and therapist is an essential component of psychotherapy. However, finding objective neural markers of the quality of the psychotherapeutic relationship have been elusive. Here we conceptualize how a neuroscience-informed approach involving real-time neurofeedback, facilitated via existing functional magnetic resonance imaging (fMRI) and electroencephalography (EEG) technologies, could provide objective information for facilitating therapeutic rapport. We propose several neurofeedback-assisted psychotherapy (NF-AP) approaches that could be studied as a way to optimize the experience of the individual patient and therapist across the spectrum of psychotherapeutic treatment. Finally, we consider how the possible strengths of these approaches are balanced by their current limitations and discuss the future prospects of NF-AP.


Neurofeedback , Psychotherapy , Humans , Neurofeedback/physiology , Neurofeedback/methods , Psychotherapy/methods , Professional-Patient Relations , Communication , Electroencephalography , Brain/physiology , Brain/diagnostic imaging
6.
BMJ Open ; 14(4): e079098, 2024 Apr 17.
Article En | MEDLINE | ID: mdl-38631828

INTRODUCTION: Electroencephalographic neurofeedback (NFB), as a non-invasive form of brainwave training, has been shown to be effective in the treatment of various mental health disorders. However, only few results regarding manualised and standardised NFB trainings exist. This makes comparison as well as replication of studies difficult. Therefore, we developed a standard manual for NFB training in patients with mental health disorders attending a psychosomatic outpatient clinic. The current study aims at investigating the conduction of a standardised manual for NFB training in patients with mental health disorders. If successful, the study provides new opportunities to investigate NFB in a more controlled and comparable manner in clinical practice. METHODS AND ANALYSIS: 30 patients diagnosed with a mental health disorder will be included. After the educational interview, patients will undergo baseline diagnostics (T0). The subsequent intervention consists of 10 sessions of NFB training aiming at increasing sensorimotor rhythm and alpha-frequency amplitudes and decreasing theta-frequency and high beta-frequency amplitudes to induce relaxation and decrease subjective stress. All patients will undergo a post-treatment diagnostic assessment (T1) and a follow-up assessment 8 weeks following the closing session (T2). Changes in amplitude bands (primary outcome) will be recorded with electroencephalography during pre-assessments, post-assessments and follow-up assessments and during NFB sessions. Physiological (respiratory rate, blood volume pulse, muscle tension) and psychometric parameters (distress, perceived stress, relaxation ability, depressive and anxiety symptoms, insomnia, self-efficacy and quality of life) will be assessed at T0, T1 and T2. Moreover, satisfaction, acceptance and usability will be assessed at T1 after NFB training. Further, qualitative interviews about the experiences with the intervention will be conducted with NFB practitioners 6 months after the study starts. Quantitative data will be analysed using repeated measures analysis of variance as well as mediation analyses on mixed linear models. Qualitative data will be analysed using Mayring's content analysis. ETHICS AND DISSEMINATION: The study was approved by the ethics committee of the Medical Faculty of the University of Duisburg-Essen (23-11140-BO) and patient enrolment began in April 2023. Before participation, written informed consent by each participant will be required. Results will be published in peer-reviewed journals and conference presentations. TRIAL REGISTRATION NUMBER: Prospectively registered on 28 March 2023 in the German clinical trials register, DRKS00031497.


Neurofeedback , Humans , Electroencephalography/methods , Neurofeedback/methods , Outpatients , Pilot Projects , Quality of Life
7.
J Rehabil Med ; 56: jrm18253, 2024 Mar 07.
Article En | MEDLINE | ID: mdl-38450442

OBJECTIVE: To examine the clinical effects of combining motor imagery-based neurofeedback training with bilateral repetitive transcranial magnetic stimulation for upper limb motor function in subacute and chronic stroke. DESIGN: Clinical trial following an AB/BA crossover design with counterbalanced assignment. SUBJECTS: Twenty individuals with subacute (n = 4) or chronic stroke (n = 16). METHODS: Ten consecutive sessions of bilateral repetitive transcranial magnetic stimulation alone (therapy A) were compared vs a combination of10 consecutive sessions of bilateral repetitive transcranial magnetic stimulation with 12 non-consecutive sessions of motor imagery-based neurofeedback training (therapy B). Patients received both therapies (1-month washout period), in sequence AB or BA. Participants were assessed before and after each therapy and at 15-days follow-up, using the Fugl-Meyer Assessment-upper limb, hand-grip strength, and the Nottingham Sensory Assessment as primary outcome measures. RESULTS: Both therapies resulted in improved functionality and sensory function. Therapy B consistently exhibited superior effects compared with therapy A, according to Fugl-Meyer Assessment and tactile and kinaesthetic sensory function across multiple time-points, irrespective of treatment sequence. No statistically significant differences between therapies were found for hand-grip strength. CONCLUSION: Following subacute and chronic stroke, integrating bilateral repetitive transcranial magnetic stimulation and motor imagery-based neurofeedback training has the potential to enhance functional performance compared with using bilateral repetitive transcranial magnetic stimulation alone in upper limb recovery.


Neurofeedback , Stroke , Humans , Cross-Over Studies , Hand Strength , Stroke/complications , Transcranial Magnetic Stimulation , Upper Extremity
8.
J Integr Neurosci ; 23(3): 67, 2024 Mar 21.
Article En | MEDLINE | ID: mdl-38538229

BACKGROUND: Electroencephalography (EEG) stands as a pivotal non-invasive tool, capturing brain signals with millisecond precision and enabling real-time monitoring of individuals' mental states. Using appropriate biomarkers extracted from these EEG signals and presenting them back in a neurofeedback loop offers a unique avenue for promoting neural compensation mechanisms. This approach empowers individuals to skillfully modulate their brain activity. Recent years have witnessed the identification of neural biomarkers associated with aging, underscoring the potential of neuromodulation to regulate brain activity in the elderly. METHODS AND OBJECTIVES: Within the framework of an EEG-based brain-computer interface, this study focused on three neural biomarkers that may be disturbed in the aging brain: Peak Alpha Frequency, Gamma-band synchronization, and Theta/Beta ratio. The primary objectives were twofold: (1) to investigate whether elderly individuals with subjective memory complaints can learn to modulate their brain activity, through EEG-neurofeedback training, in a rigorously designed double-blind, placebo-controlled study; and (2) to explore potential cognitive enhancements resulting from this neuromodulation. RESULTS: A significant self-modulation of the Gamma-band synchronization biomarker, critical for numerous higher cognitive functions and known to decline with age, and even more in Alzheimer's disease (AD), was exclusively observed in the group undergoing EEG-neurofeedback training. This effect starkly contrasted with subjects receiving sham feedback. While this neuromodulation did not directly impact cognitive abilities, as assessed by pre- versus post-training neuropsychological tests, the high baseline cognitive performance of all subjects at study entry likely contributed to this result. CONCLUSION: The findings of this double-blind study align with a key criterion for successful neuromodulation, highlighting the significant potential of Gamma-band synchronization in such a process. This important outcome encourages further exploration of EEG-neurofeedback on this specific neural biomarker as a promising intervention to counter the cognitive decline that often accompanies brain aging and, eventually, to modify the progression of AD.


Alzheimer Disease , Neurofeedback , Humans , Aged , Neurofeedback/methods , Electroencephalography , Brain/physiology , Cognition/physiology , Alzheimer Disease/therapy , Biomarkers
9.
Medicina (Kaunas) ; 60(3)2024 Feb 22.
Article En | MEDLINE | ID: mdl-38541096

Background and Objective: Existing evidence indicates the potential benefits of electroencephalography neurofeedback (NFB) training for cognitive function. This study aims to comprehensively review all available evidence investigating the effectiveness of NFB on working memory (WM) and episodic memory (EM) in the elderly population. Material and Methods: A systematic search was conducted across five databases to identify clinical trials examining the impact of NFB on memory function in healthy elderly individuals or those with mild cognitive impairment (MCI). The co-primary outcomes focused on changes in WM and EM. Data synthesis was performed using a random-effects meta-analysis. Results: Fourteen clinical trials (n = 284) were included in the analysis. The findings revealed that NFB was associated with improved WM (k = 11, reported as Hedges' g = 0.665, 95% confidence [CI] = 0.473 to 0.858, p < 0.001) and EM (k = 12, 0.595, 0.333 to 0.856, p < 0.001) in the elderly, with moderate effect sizes. Subgroup analyses demonstrated that NFB had a positive impact on both WM and EM, not only in the healthy population (WM: k = 7, 0.495, 0.213 to 0.778, p = 0.001; EM: k = 6, 0.729, 0.483 to 0.976, p < 0.001) but also in those with MCI (WM: k = 6, 0.812, 0.549 to 1.074, p < 0.001; EM: k = 6, 0.503, 0.088 to 0.919, p = 0.018). Additionally, sufficient training time (totaling more than 300 min) was associated with a significant improvement in WM (k = 6, 0.743, 0.510 to 0.976, p < 0.001) and EM (k = 7, 0.516, 0.156 to 0.876, p = 0.005); however, such benefits were not observed in groups with inadequate training time. Conclusions: The results suggest that NFB is associated with enhancement of both WM and EM in both healthy and MCI elderly individuals, particularly when adequate training time (exceeding 300 min) is provided. These findings underscore the potential of NFB in dementia prevention or rehabilitation.


Memory, Episodic , Neurofeedback , Aged , Humans , Memory, Short-Term , Neurofeedback/methods , Electroencephalography , Cognition
10.
Behav Res Ther ; 176: 104523, 2024 May.
Article En | MEDLINE | ID: mdl-38513424

Previous work has shown that adults suffering from major depressive disorder (MDD) can increase their amygdala reactivity while recalling positive memories via real-time neurofeedback (rt-fMRI-nf) training, which is associated with reduction in depressive symptoms. This study investigated if this intervention could also be considered for patients suffering from MDD who do not respond to standard psychological and pharmacological interventions, i.e., treatment resistant (TR-MDD). 15 participants received 5 neurofeedback sessions. Outcome measures were depressive symptoms assessed by BDI scores up to 12 weeks following acute intervention, and amygdala activity changes from initial baseline to final transfer run during neurofeedback sessions (neurofeedback success). Participants succeeded in increasing their amygdala activity. A main effect of visit on BDI scores indicated a significant reduction in depressive symptomatology. Percent signal change in the amygdala showed a learning curve during the first session only. Neurofeedback success computed by session was significantly positive only during the second session. When examining the baseline amygdala response, baseline activity stabilized/asymptoted by session 3. This proof-of-concept study suggests that only two neurofeedback sessions are necessary to enable those patients to upregulate their amygdala activity, warranting a future RCT. Over the course of the rtfMRI-nf intervention, participants also reported reduced depressive symptomatology. Clinical trial registration number: NCT03428828 on ClinicalTrials.gov.


Depressive Disorder, Major , Depressive Disorder, Treatment-Resistant , Neurofeedback , Adult , Humans , Amygdala/physiology , Depressive Disorder, Major/therapy , Depressive Disorder, Treatment-Resistant/therapy , Magnetic Resonance Imaging , Neurofeedback/physiology , Up-Regulation
11.
Rev Neurol (Paris) ; 180(4): 314-325, 2024 Apr.
Article En | MEDLINE | ID: mdl-38485630

Neurofeedback is a brain-computer interface tool enabling the user to self-regulate their neuronal activity, and ultimately, induce long-term brain plasticity, making it an interesting instrument to cure brain disorders. Although this method has been used successfully in the past as an adjunctive therapy in drug-resistant epilepsy, this approach remains under-explored and deserves more rigorous scientific inquiry. In this review, we present early neurofeedback protocols employed in epilepsy and provide a critical overview of the main clinical studies. We also describe the potential neurophysiological mechanisms through which neurofeedback may produce its therapeutic effects. Finally, we discuss how to innovate and standardize future neurofeedback clinical trials in epilepsy based on evidence from recent research studies.


Brain-Computer Interfaces , Epilepsy , Neurofeedback , Humans , Neurofeedback/methods , Epilepsy/therapy , Epilepsy/psychology , Brain-Computer Interfaces/trends , Neuronal Plasticity/physiology , Self-Control , Brain/physiology , Brain/physiopathology
12.
Elife ; 122024 Mar 28.
Article En | MEDLINE | ID: mdl-38547008

In recent years, there has been debate about the effectiveness of treatments from different fields, such as neurostimulation, neurofeedback, brain training, and pharmacotherapy. This debate has been fuelled by contradictory and nuanced experimental findings. Notably, the effectiveness of a given treatment is commonly evaluated by comparing the effect of the active treatment versus the placebo on human health and/or behaviour. However, this approach neglects the individual's subjective experience of the type of treatment she or he received in establishing treatment efficacy. Here, we show that individual differences in subjective treatment - the thought of receiving the active or placebo condition during an experiment - can explain variability in outcomes better than the actual treatment. We analysed four independent datasets (N = 387 participants), including clinical patients and healthy adults from different age groups who were exposed to different neurostimulation treatments (transcranial magnetic stimulation: Studies 1 and 2; transcranial direct current stimulation: Studies 3 and 4). Our findings show that the inclusion of subjective treatment can provide a better model fit either alone or in interaction with objective treatment (defined as the condition to which participants are assigned in the experiment). These results demonstrate the significant contribution of subjective experience in explaining the variability of clinical, cognitive, and behavioural outcomes. We advocate for existing and future studies in clinical and non-clinical research to start accounting for participants' subjective beliefs and their interplay with objective treatment when assessing the efficacy of treatments. This approach will be crucial in providing a more accurate estimation of the treatment effect and its source, allowing the development of effective and reproducible interventions.


Neuromodulation is a type of intervention that relies on various non-invasive techniques to temporarily stimulate the brain and nervous system. It can be used for the treatment of depression or other medical conditions, as well as the improvement of cognitive abilities such as attention. However, there is conflicting evidence regarding whether this approach has beneficial effects. Most studies aiming to assess the efficiency of a treatment rely on examining the outcomes of people who received the intervention in comparison to participants who undergo a similar procedure with no therapeutic effect (or placebo). However, the influence of other, 'subjective' factors on these results ­ such as the type of intervention participants think they have received ­ remains poorly investigated. To bridge this gap, Fassi and Hochman et al. used statistical modeling to assess how patients' beliefs about their treatment affected the results of four neuromodulation studies on mind wandering, depression and attention deficit hyperactivity disorder symptoms. In two studies, participants' perceptions of their treatment status were more strongly linked to changes in depression scores and mind-wandering than the actual treatment. Results were more nuanced in the other two studies. In one of them, participants who received the real neuromodulation but believed they received the placebo showed the most improvement in depressive symptoms; in the other study, subjective beliefs and objective treatment both explained changes in inattention symptoms. Taken together, the results by Fassi and Hochman et al. suggest that factoring in patients' subjective beliefs about their treatment may be necessary in studies of neuromodulation and other interventions like virtual reality or neurofeedback, where participants are immersed in cutting-edge research settings and might therefore be more susceptible to develop beliefs about treatment efficacy.


Neurofeedback , Transcranial Direct Current Stimulation , Adult , Female , Humans , Neurofeedback/methods , Transcranial Magnetic Stimulation , Treatment Outcome , Male
13.
Sensors (Basel) ; 24(5)2024 Feb 26.
Article En | MEDLINE | ID: mdl-38475049

The clinical effects of a serious game with electromyography feedback (EMGs_SG) and physical therapy (PT) was investigated prospectively in children with unilateral spastic cerebral palsy (USCP). An additional aim was to better understand the influence of muscle shortening on function. Thirty children with USCP (age 7.6 ± 2.1 years) received four weeks of EMGs_SG sessions 2×/week including repetitive, active alternating training of dorsi- and plantar flexors in a seated position. In addition, each child received usual PT treatment ≤ 2×/week, involving plantar flexor stretching and command strengthening on dorsi- and plantar flexors. Five-Step Assessment parameters, including preferred gait velocity (normalized by height); plantar flexor extensibility (XV1); angle of catch (XV3); maximal active ankle dorsiflexion (XA); and derived coefficients of shortening, spasticity, and weakness for both soleus and gastrosoleus complex (GSC) were compared pre and post treatment (t-tests). Correlations were explored between the various coefficients and gait velocities at baseline. After four weeks of EMGs_SG + PT, there was an increase in normalized gait velocity from 0.72 ± 0.13 to 0.77 ± 0.13 m/s (p = 0.025, d = 0.43), a decrease in coefficients of shortening (soleus, 0.10 ± 0.07 pre vs. 0.07 ± 0.08 post, p = 0.004, d = 0.57; GSC 0.16 ± 0.08 vs. 0.13 ± 0.08, p = 0.003, d = 0.58), spasticity (soleus 0.14 ± 0.06 vs. 0.12 ± 0.07, p = 0.02, d = 0.46), and weakness (soleus 0.14 ± 0.07 vs. 0.11 ± 0.07, p = 0.005, d = 0.55). At baseline, normalized gait velocity correlated with the coefficient of GSC shortening (R = -0.43, p = 0.02). Four weeks of EMGs_SG and PT were associated with improved gait velocity and decreased plantar flexor shortening. A randomized controlled trial comparing EMGs_SG and conventional PT is needed.


Cerebral Palsy , Neurofeedback , Child , Humans , Child, Preschool , Prospective Studies , Muscle, Skeletal , Muscle Spasticity , Physical Therapy Modalities , Gait/physiology , Electromyography
14.
J Korean Med Sci ; 39(9): e94, 2024 Mar 11.
Article En | MEDLINE | ID: mdl-38469966

BACKGROUND: To evaluate the therapeutic effectiveness and safety of a neurofeedback wearable device for stress reduction. METHODS: A randomized, double-blind, controlled study was designed. Participants had psychological stress with depression or sleep disturbances. They practiced either neurofeedback-assisted meditation (n = 20; female, 15 [75.0%]; age, 49.40 ± 11.76 years) or neurofeedback non-assisted meditation (n = 18; female, 11 [61.1%]; age, 48.67 ± 12.90 years) for 12 minutes twice a day for two weeks. Outcome variables were self-reported questionnaires, including the Korean version of the Perceived Stress Scale, Beck Depression Inventory-II, Insomnia Severity Index, Pittsburgh Sleep Quality Index, and State Trait Anxiety Index, quantitative electroencephalography (qEEG), and blood tests. Satisfaction with device use was measured at the final visit. RESULTS: The experimental group had a significant change in PSS score after two weeks of intervention compared with the control group (6.45 ± 0.95 vs. 3.00 ± 5.54, P = 0.037). State anxiety tended to have a greater effect in the experimental group than in the control group (P = 0.078). Depressive mood and sleep also improved in each group, with no significant difference between the two groups. There were no significant differences in stress-related physiological parameters, such as stress hormones or qEEG, between the two groups. Subjective device satisfaction was significantly higher in the experimental group than in the control group (P = 0.008). CONCLUSION: Neurofeedback-assisted meditation using a wearable device can help improve subjective stress reduction compared with non-assisted meditation. These results support neurofeedback as an effective adjunct to meditation for relieving stress. TRIAL REGISTRATION: Clinical Research Information Service Identifier: KCT0007413.


Meditation , Neurofeedback , Psychological Tests , Self Report , Wearable Electronic Devices , Adult , Female , Humans , Middle Aged , Double-Blind Method , Meditation/methods , Meditation/psychology , Stress, Psychological/therapy , Stress, Psychological/psychology , Male
15.
Child Care Health Dev ; 50(2): e13231, 2024 03.
Article En | MEDLINE | ID: mdl-38465844

BACKGROUND: Limited research exists regarding the effectiveness of electroencephalogram (EEG) neurofeedback training for children with cerebral palsy (CP) and co-occurring attention deficits (ADs), despite the increasing prevalence of these dual conditions. This study aimed to fill this gap by examining the impact of neurofeedback training on the attention levels of children with CP and AD. METHODS: Nineteen children with both CP and co-occurring ADs were randomly assigned to either a neurofeedback or control group. The neurofeedback group received 20 sessions of training, lasting approximately 1 h per day, twice a week. Theta/beta ratios of the quantitative electroencephalography (QEEG) recordings were measured pre-training and post-training in the resting state. The Continuous Performance Test (CPT), the Test of Visual Perceptual Skills-3rd Version (TVPS-3) and the Conners' Parent Rating Scale (CPRS) were measured at pre- and post-training. RESULTS: The neurofeedback group showed both decreased theta/beta ratios compared with control group (p = 0.04) at post-training and a within-group improvement during training (p = 0.02). Additionally, the neurofeedback group had a trend of decreased omission rates of the CPT (p = 0.08) and the visual sequential memory and the visual closure subscores in the TVPS-3, compared with the control group (p = 0.02 and p = 0.01, respectively). CONCLUSIONS: The results suggested that children with CP and co-occurring AD may benefit from neurofeedback training in their attention level. Further research is needed to explore long-term effects and expand its application in this population.


Attention Deficit Disorder with Hyperactivity , Cerebral Palsy , Neurofeedback , Child , Humans , Neurofeedback/methods , Pilot Projects , Cerebral Palsy/complications , Electroencephalography/methods , Attention Deficit Disorder with Hyperactivity/therapy
16.
Neuroimage ; 290: 120575, 2024 Apr 15.
Article En | MEDLINE | ID: mdl-38479461

Investigation of neural mechanisms of real-time functional MRI neurofeedback (rtfMRI-nf) training requires an efficient study control approach. A common rtfMRI-nf study design involves an experimental group, receiving active rtfMRI-nf, and a control group, provided with sham rtfMRI-nf. We report the first study in which rtfMRI-nf procedure is controlled through counterbalancing training runs with active and sham rtfMRI-nf for each participant. Healthy volunteers (n = 18) used rtfMRI-nf to upregulate fMRI activity of an individually defined target region in the left dorsolateral prefrontal cortex (DLPFC) while performing tasks that involved mental generation of a random numerical sequence and serial summation of numbers in the sequence. Sham rtfMRI-nf was provided based on fMRI activity of a different brain region, not involved in these tasks. The experimental procedure included two training runs with the active rtfMRI-nf and two runs with the sham rtfMRI-nf, in a randomized order. The participants achieved significantly higher fMRI activation of the left DLPFC target region during the active rtfMRI-nf conditions compared to the sham rtfMRI-nf conditions. fMRI functional connectivity of the left DLPFC target region with the nodes of the central executive network was significantly enhanced during the active rtfMRI-nf conditions relative to the sham conditions. fMRI connectivity of the target region with the nodes of the default mode network was similarly enhanced. fMRI connectivity changes between the active and sham conditions exhibited meaningful associations with individual performance measures on the Working Memory Multimodal Attention Task, the Approach-Avoidance Task, and the Trail Making Test. Our results demonstrate that the counterbalanced active-sham study design can be efficiently used to investigate mechanisms of active rtfMRI-nf in direct comparison to those of sham rtfMRI-nf. Further studies with larger group sizes are needed to confirm the reported findings and evaluate clinical utility of this study control approach.


Neurofeedback , Humans , Neurofeedback/methods , Magnetic Resonance Imaging/methods , Cognitive Training , Brain/diagnostic imaging , Brain/physiology , Brain Mapping/methods
17.
Behav Res Ther ; 176: 104522, 2024 May.
Article En | MEDLINE | ID: mdl-38547724

Individuals experiencing suicidal thoughts and behaviors (STBs) show less specificity and positivity during episodic future thinking (EFT). Here, we present findings from two studies aiming to (1) further our understanding of how STBs may relate to neural responsivity during EFT and (2) examine the feasibility of modulating EFT-related activation using real-time fMRI neurofeedback (rtfMRI-nf). Study 1 involved 30 individuals with major depressive disorder (MDD; half with STBs) who performed an EFT task during fMRI, for which they imagined personally-relevant future positive, negative, or neutral events. Positive EFT elicited greater ventromedial prefrontal cortex (vmPFC) activation compared to negative EFT. Importantly, the MDD + STB group exhibited reduced vmPFC activation across all EFT conditions compared to MDD-STB; although EFT fluency and subjective experience remained consistent across groups. Study 2 included rtfMRI-nf focused on vmPFC modulation during positive EFT for six participants with MDD + STBs. Results support the feasibility and acceptability of the rtfMRI-nf protocol and quantitative and qualitative observations are provided to help inform future, larger studies aiming to examine similar neurofeedback protocols. Results implicate vmPFC blunting as a promising treatment target for MDD + STBs and suggest rtfMRI-nf as one potential technique to explore for enhancing vmPFC engagement.


Depressive Disorder, Major , Neurofeedback , Humans , Neurofeedback/methods , Suicidal Ideation , Depressive Disorder, Major/therapy , Prefrontal Cortex , Magnetic Resonance Imaging
18.
Article En | MEDLINE | ID: mdl-38354898

Working memory (WM) represents a building-block of higher cognitive functions and a wide range of mental disorders are associated with WM impairments. Initial studies have shown that several sessions of functional near-infrared spectroscopy (fNIRS) informed real-time neurofeedback (NF) allow healthy individuals to volitionally increase activity in the dorsolateral prefrontal cortex (DLPFC), a region critically involved in WM. For the translation to therapeutic or neuroenhancement applications, however, it is critical to assess whether fNIRS-NF success transfers into neural and behavioral WM enhancement in the absence of feedback. We therefore combined single-session fNIRS-NF of the left DLPFC with a randomized sham-controlled design (N = 62 participants) and a subsequent WM challenge with concomitant functional MRI. Over four runs of fNIRS-NF, the left DLPFC NF training group demonstrated enhanced neural activity in this region, reflecting successful acquisition of neural self-regulation. During the subsequent WM challenge, we observed no evidence for performance differences between the training and the sham group. Importantly, however, examination of the fMRI data revealed that - compared to the sham group - the training group exhibited significantly increased regional activity in the bilateral DLPFC and decreased left DLPFC - left anterior insula functional connectivity during the WM challenge. Exploratory analyses revealed a negative association between DLPFC activity and WM reaction times in the NF group. Together, these findings indicate that healthy individuals can learn to volitionally increase left DLPFC activity in a single training session and that the training success translates into WM-related neural activation and connectivity changes in the absence of feedback. This renders fNIRS-NF as a promising and scalable WM intervention approach that could be applied to various mental disorders.


Memory, Short-Term , Neurofeedback , Humans , Memory, Short-Term/physiology , Neurofeedback/methods , Prefrontal Cortex/diagnostic imaging , Prefrontal Cortex/physiology , Magnetic Resonance Imaging/methods , Cognition
19.
Behav Brain Res ; 465: 114917, 2024 May 08.
Article En | MEDLINE | ID: mdl-38401602

Virtual Reality (VR) serves as a modern and powerful tool within the domain of neurofeedback (NF). Users can learn how to alter their own brain activation with the help of NF, for example visual feedback. VR can help to make the training more engaging and motivating with its immersive nature. However, cybersickness (CS) poses a serious problem, as it negatively affects up to 80% of all VR users. Especially women seem to be affected. Some studies suggest positive effects of placebo interventions, so that less CS in the users can be detected. Hence, we investigated whether a transcranial direct current stimulation (tDCS) placebo intervention can influence CS symptoms in a VR-based NF training and whether CS affects NF performance. Additionally, we focused on possible sex differences in the development of CS and the NF success. For this purpose, we tested 41 healthy participants in an EEG-NF-training with sensorimotor rhythm (SMR, 12-15 Hz) upregulation and VR feedback. Half of the participants got a placebo tDCS stimulation in advance to the training and were told that the stimulation would prevent them from getting cybersick. The other half received no such treatment. Both groups underwent six NF runs to three minutes each where they were asked to follow a ball along a predefined path in the virtual environment by increasing their SMR. Results showed that women experienced significantly more CS than men regardless of whether they received a placebo intervention or not. Women were also not able to increase their SMR successfully over the six NF runs. Male participants were able to increase their SMR. Also, only participants in the non-placebo group were able to increase their SMR, not those from the placebo group. The tDCS placebo intervention had little to no effect on sickness symptoms in VR, however it hampered the ability to increase SMR power. Also, CS seems to be associated with a worse NF training outcome, especially in women. Strategies to reduce CS inducing factors in VR environments could help participants to benefit more from a VR-based NF training. This should be especially considered in vulnerable groups that are more prone to CS.


Neurofeedback , Transcranial Direct Current Stimulation , Humans , Male , Female , Neurofeedback/methods , Transcranial Direct Current Stimulation/methods , Electroencephalography/methods , Brain/physiology , Learning
20.
Sci Rep ; 14(1): 3433, 2024 02 10.
Article En | MEDLINE | ID: mdl-38341457

Limitations in chronic pain therapies necessitate novel interventions that are effective, accessible, and safe. Brain-computer interfaces (BCIs) provide a promising modality for targeting neuropathology underlying chronic pain by converting recorded neural activity into perceivable outputs. Recent evidence suggests that increased frontal theta power (4-7 Hz) reflects pain relief from chronic and acute pain. Further studies have suggested that vibrotactile stimulation decreases pain intensity in experimental and clinical models. This longitudinal, non-randomized, open-label pilot study's objective was to reinforce frontal theta activity in six patients with chronic upper extremity pain using a novel vibrotactile neurofeedback BCI system. Patients increased their BCI performance, reflecting thought-driven control of neurofeedback, and showed a significant decrease in pain severity (1.29 ± 0.25 MAD, p = 0.03, q = 0.05) and pain interference (1.79 ± 1.10 MAD p = 0.03, q = 0.05) scores without any adverse events. Pain relief significantly correlated with frontal theta modulation. These findings highlight the potential of BCI-mediated cortico-sensory coupling of frontal theta with vibrotactile stimulation for alleviating chronic pain.


Brain-Computer Interfaces , Chronic Pain , Neurofeedback , Humans , Chronic Pain/therapy , Electroencephalography , Pilot Projects , Longitudinal Studies , Non-Randomized Controlled Trials as Topic
...